PERIPARTURIENT EVENT AND DYSTOCIA IN EQUINE- A REVIEW
*A Thangamani¹, M Srinivas², B Chandra Prasad³ and L Phani Kumar⁴
¹M.V.Sc Scholar, ²Professor, ³Assistant Professor, ⁴Teaching Assistant
Department of Veterinary Gynaecology and Obstetrics
NTR College of Veterinary Science, Gannavaram, Andhra Pradesh-521 102
Sri Venkateswara Veterinary University
E-mail: thangamtamil19@gmail.com (*Corresponding author)

Abstract: Equine species are unique in reproduction. Equines are long day seasonal breeder and parturition process that resembles closely in many ways to other domestic animals although some differences exist. The present review describes about signs of approaching parturition, fetal orientation during parturition, signs of dystocia and common forms of dystocia encountered in equines are described.

Keywords: Dystocia, Equine, Foetal orientation, Foetal maldisposition, Parturition.

INTRODUCTION
Equine species are long day seasonal breeder and parturition process that resembles closely in many ways to other domestic animals although some differences exist. The gestation period in the mare is about 340-350 days, may be deliver normally up to 380-385 days (Davis Morel et al., 2002). Some Through breed mare with quick fetal development may foal prior to 315-325 days (Hungerford, 1990; Davis Morel et al., 2002).

Signs of approaching Parturition: 1. Mare have the ability to exercise some control over the onset of parturition and most foals are born when stable activity is at minimum (Purohit et al., 1999), moreover at night hours foaling occurs. 2. In late gestation slight relaxation of sacro-sciatic ligaments occur as not as in cattle due to heavy croup muscles. 3. Udder started to develops last one to one and half months of gestation. 4. Mammary hypertrophy, tumefaction of teat and waxing of teat may be seen 24 -48hours before parturition in most mares, but not in all mares (Frazer et al., 1999a), in Through breed mare it noticed 4 hours before onset of parturition (Noakes et al., 2009). 5. Patchy sweating behind elbows and about the flanks and frequent urination is the best indication onset of first stage of labour in majority of the mares (Noakes et al., 2009), followed by the core body temperature becomes slightly sub-normal (36.5-37°C). 6. The end of the second stage indicated by crouching, straddling movement of the hind limbs, get down on sternum and rise again, seeing at flak region, followed by rupture of the chorio-allantoic membranes and flashing of urine like allantoic fluid from the ruptured...
water bag. Description of membranes: The outer surface of the chorionic membrane is deep red in colour and has an appear as velvety whereas the amnion is opaque bluish white within that the fetal parts not clearly visible from outside as in cattle. 7. The onset of second stage of labour process occurs abruptly. It is characterized by appearance of the amniotic bag and commencement of vigorous straining, followed by very soon the mare goes down in right or left lateral recumbency and there is appearance of fetal leg or parts. One foal fetal leg is around 6 inches or 7-8 cm ahead of the second leg till the head of fetal born (Benesch and Wright, 2001). 8. Equine delivery is rapid and tremendous effort and delivery of foal, the mare remain lying on her side maximum up to 30 minutes. The fetal umbilical cord is intact when the foal is born. It may ruptures by the straining movement of mare or foal movement. 9. Generally third stage of labour (shedding of fetal membranes) completed within 3 hours.

Foetal Orientation during Parturition:

The equine fetal orientation during parturition appears to be a complex event. Jeffcott and Rossdale, (1979) reported that the full term equine fetus is initially lying in a dorso pubic position. Moreover the head, neck and forelimbs flexed posture. The increasing uterine tone during first stage of labour stimulates the fetus to extend its head and forelimbs, it can be described as "Standing up in utero" (Ginther, 1998). Moreover rupture of the chorio-allantois and gushing of the allantoic fluid does not occur until the fetlocks portion or knees are at the level of the external cervical opening (Frazer, 2001a). As labour progress the nose of the fetus reaches the vulva the cranial half of the fetus rotates from a dorsopubic position to dorsoilial position (Ginther, 1998). Finally the foal's withers continue to rotate into a dorso sacral position as the head appears through the vulvar lips, followed by the fetal pelvis rotates as the hips pass through the vulva (Frazer, 2001a). Axial rotations of 90° involving the cranial aspect of the fetus associated with head and neck postural changes, are common during late gestation period in the mare (Frazer, 2001a).

DYSTOCIA: Birth that causes maternal injury, requires assistance and reduces the neonatal viability is termed as dystocia (Purohit and Honnappagol, 2009). Equine dystocia gives challenging to the field and stud farm veterinary practitioners.

Compared to other domestic animal species, equine species are less prone for difficult delivery/ dystocia, but when it occurs it is considered as true emergency, because equines are precious species, where minute makes a difference in the survivability of the either fetus or mother (Norten et al., 2007; Wilkins, 2008), moreover foaling occur in night hours.
Signs of dystocia in equine: 1. Prolonged first stage of labour, 2. No progression in the second stage of labour even 20-30 minutes after rupture of chorio-allantoic membranes and release of fluids, 3. Increased severity of straining, 4. Absence of fetal parts in the vagina even after one hour of rupture of water bag, 5. No progress in straining, 6. not able to lie down, 7. Premature separation of the chorio-allantoic membranes (Red bag condition), 8. Comfortable first stage of labour, but failure in initiation of second stage of labour (Uterine inertia), 9. Continuous straining without any cervical discharges and fetal fluid discharge (Incomplete cervical dilation, uterine torsion).

Incidence of Dystocia:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Incidence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Not related with age, but common in old mares</td>
<td>Frazer, (2007)</td>
</tr>
<tr>
<td>Sex of the fetus</td>
<td>More in mares with male fetuses than female</td>
<td>Jackson, (1995)</td>
</tr>
<tr>
<td>Parity</td>
<td>More in primiparous</td>
<td>Ginther and Williams, (1996); Ball, (2005)</td>
</tr>
<tr>
<td>Breed</td>
<td>Through breeds (4%) Belgian draught mare and Shetland ponies (10%)</td>
<td>Frazer, (2001a); Swendsen, (1989); Vandeplassche, (1992)</td>
</tr>
<tr>
<td>Difference within the species</td>
<td>Less frequency in Miniature pony mares, feral equids like Zebra</td>
<td>Neves et al., (2009); Kloppel, (1991)</td>
</tr>
</tbody>
</table>

CAUSES

Although the causes of dystocia in equine can be classified according to maternal and fetal associated origin, however, most records depict that fetal maldisposition (flexion of limbs and deviation of head) and obstruction of the birth canal (Uterine torsion) are most common cause of dystocia in equines (Frazer et al., 1997b; Chaney et al., 2007; Lopez and Carmona, 2010). Roberts, (2004); Threlfall, (2007) described the maternal and fetal cause of dystocia in equines. The present review, cause of dystocia have been discussed under the heading of *Maternal and Fetal causes*.

I. MATERNAL CAUSES

The maternal cause of dystocia in equine can be categorised as those because of defect or failure in abdominal expulsive forces and obstruction or obliteration of birth canal. The incidence of maternal cause of dystocia in mare is less than fetal cause of dystocia (Jackson, 2004).

Uterine inertia: In both mares and donkey mare this unusual condition is commonly reported. The mare is perfectly comfortable during first stage of labour with a completely
relaxed soft cervix, but does not initiate the second stage labour (Frazer et al., 1997b); some time it may due to nervous when disturbances during foaling (Jackson, 2004). Dropsical condition of the fetus also predisposed for secondary inertia due to exhaustion (Vandeplussche et al., 1976). Nervous mare should be left in calm stall and undisturbed for 20 min or parturition can be induced with 2.5 to 15 IU of oxytocin given along with 1 liter saline slow IV drip would initiate uterine contraction within 15 to 20 minutes of administration without any complication (Youngquist, 1986; Jackson, 2004). Secondary inertia associated with fetal maldisposition cases, first should be correction of maldiposition followed by per vaginal delivery.

Failure of abdominal expulsive forces: Besides uterine inertia, the causes of failure of expulsive forces described for mare include, severe emaciation and abdominal hernia (Auer et al., 1985; Hanson and Todhunter, 1986), severe pain, old age and debility (Jackson, 2004). Moreover maternal dropsical condition also lead to retard the abdominal expulsive forces (Balanchard et al., 1987; Honnas et al., 1988). When any of these factors results in dystocia, it is usually necessary to deliver the foal through assistance either per vaginal or caesarean.

Obstruction of birth canal

a) Incomplete cervical dilation: Swendsen, (1989) reported that incomplete dilation of the cervix is sometimes encountered in the mares and donkey mares. Moreover in these species cervix can be manually dilated and poses little threat in dystocia management. Tocolytics are the choice of treatment for ICD condition in mares. β2 adrenergics likes Isoxsuprine hydrochloride 200-300 mg IM or IV or Clenbuterol 0.3 mg IV (Bostedt, 1988) may be given in animals whose cervix cannot be dilated by manual dilation.

b) uterine torsion: Uterine torsion is relatively uncommon in the equine species and accompanied by signs of severe discomfort like intestinal colic. It should be differentiated from other form of colic. It usually occurs in mares from eight and half months of gestation to term. predilection of cause for torsion is difficult. Chaney et al., (2007) reported that less than 50% of torsions occur at parturition. Gestation completed at term uterine torsion led dystocia in 3.3% cases with uterine torsion occurring before the end of gestation in mares (Vasey, 1993).

Torsion of uterus must be suspected when signs of colic are seen in late gestation specifically at third trimester (Barber, 1979). The abdominal discomfort is mild in most cases, temporarily responsive after administration of analgesics. There is depression, anorexia, pawing, flank watching, kicking, and rolling it is depict that typical signs of colic. Mares may
show tachycardia, pyrexia and signs of depression (Doyle et al., 2002). Per rectal examination indicated for diagnosis of side, site and degree of torsion. Perkins et al, 1996 opined that careful palpation of uterine walls through per rectum must be done to identify uterine ruptures or tear, based on that findings proceed for manual or surgical management. Manual detorsion can be achieved by simple totation (youngquist, 1986) or some time Schaffer's method also advised (Bowen et al., 1976). Standing flank laparotomy approach indicated for un correctable torsion.

c) **Uterine rupture:** In some time uterine torsion cases with severe straining culminate uterine rupture. Perkins et al, 1996 opined that careful palpation of uterine walls through per rectum must be done to identify uterine ruptures or tear. This type of cases should be approached by standing plank laparotomy (Youngquist, 1986).

d) **Deviation of uterus:** ventral deviation of uterus may be noticed in cases of diaphragmatic hernia (Auer et al., 1985) or rupture of prepubic tendon (Troedsson, 2007). The ventral abdomen of such mares must be supported by canvas straps (Frazer et al., 1997b) and parturition initiated by hormonal treatment (Hanson and Todhunter, 1986). The prognosis of this type cases is poor to guarded and mares must be assisted during parturition or a caesarean section be performed and the mare should be removed from breeding programme (Jackson, 1995). Sometimes a mare may die shortly if the abdominal walls ruptures (Hanson and Todhunter, 1986; Brar et al., 2007).

e) **Other maternal causes:** Birth canal may rarely obstructed by vaginal and cervical stricture, vaginal carcinoma, varicose vein, however rarely they impede the foaling in mare (Jackson, 2004; Frazer, 2007). Obstruction of pelvic inlet in pelvic fractures followed by excessive ossification (exostosis) is not common in mare and breeding should be avoided from such type of mares. Mares with varicose veins condition may bleed during foaling due to dilation of birth canal, the bleeding must be arrested by standard methods or sutured under general anaesthesia (Jackson, 1995).

II. **FETAL CAUSES:**

The fetal causes of dystocia in equine include fetal maldisposition (P_1, P_2, P_3) and fetal oversize. The most common fetal causes are fetal postural (P_3) abnormalities. The less frequently encountered fetal causes include fetal oversize, fetal monsters and fetal dropsical conditions (Allen, 1986; Waelchli and Ehrensperger, 1988; Bullard and Harrison, 1995).
A) Foetal maldisposition:

Fetal maldiposition is one of the major cause of dystocia in mares (Dugdale, 2007) accounting for about more than half of the dystocia cases.

Presentation abnormality (*P*₁) includes posterior presentation encountered about 1% of all equine birth (Dugdale, 2007), transverse presentation that includes ventro transverse presentation about 0.1% (Frazer et al., 1997b), ventro-vertical presentation (dog sitting posture) about 0.7% (Baldwin et al., 1991). Both three condition giving challenging to the equine obstetricians and complicated one due to bi-cornual pregnancy (Frazer et al., 2001a). Treatment of option includes most probably fetotomy and cesarean section (Youngquist, 1986) for this type of abnormal presentations.

Abnormal position (*P*₂) includes dorsoiliial or dorsopubic position that culminate dystocia in posterior presentation mostly (Frazer et al., 1999b), because fetus fails rotates to dorsosacral position during foaling. Manually the abnormal position are corrected with help of ample quantity of lubrication.

Abnormal postures (*P*₃) includes lateral head deviation of head and neck appears to be preponderance cause of severe dystocia (Dadarwal et al., 2008; Frazer, 2009), Wry neck posture (Rice, 1994), deviation of head-vertex, nape and breast head posture (Youngquist, 1986, Frazer, 2001a), carpal flexion posture (Nahkashi et al., 2008), shoulder flexion-unilateral (Swimming posture) and bi-lateral (Diving posture) (Christensen, 2008), foot nape posture (Dugdale, 2007), hock flexion posture (Frazer et al., 1997b), breech presentation (Frazer et al., 1997b; Frazer et al., 2001a). Correction of posture: Epidural analgsia or general anaesthesia induced, followed by ample lubrication must be infused and fetus must be removed by obstetrical mutation procedure, difficult cases removed by either fetotomy or caesarean section (Youngquist, 1986).

B. Foetal oversize:

Fetal oversize is relatively not common in mares (Vandepllassche, 1993). However, breeding with males bigger than females or in some drought horses, foals with relative oversize can sometimes be born. Foals in transverse pregnancies are sometimes larger due increased space for fetal growth (Jackson, 1995). Prolonged gestation not always result in fetal oversize (Jackson, 1995).

Fetal congenital anomalies and monsters are rare in equine. However, hydrocephalus (Dugdale, 2007), *Schistosoma reflexus* (Dubbin *et al.*, 1990; Ball, 2005), ankylosis of one or more limbs and wry neck are known to occur (Ball, 2005).
Fetomateral disproportion (FMD) is not a common form of dystocia in equine about less than 2% (Frazer et al., 1997). However, when feto-maternal disproportion occurs, it can be warranted caesarean section or fetotomy procedure. Foetal oversize condition managed by depending upon the size of the fetus by mutation, fetotomy and cesarean section (Youngquist, 1986).

Conclusion
Mammary hypertrophy, tumefaction of teat and waxing of teat may be seen 24 -48hours before parturition in most mares considered as imminent signs of parturition. Full term equine fetus is initially lying in a dorso pubic position. Moreover the head, neck and forelimbs flexed posture. Compared to other domestic animal species, equine species are less prone for difficult delivery/ dystocia, but when it occurs it is considered as true emergency. Most records depict that fetal maldisposition (flexion of limbs and deviation of head) and obstruction of the birth canal (Uterine torsion) are most common cause of dystocia in equines. Early intervention may save the mare and foal life.

References

