Introduction

Scientists are searching for an alternate source of cheaper agro-industrial by product with high protein. One such alternative source is Brewery spent grain (BSG) which contains 21-29% crude protein on dry matter basis (Su and Heng-Chun, 1995; Westendorf and Wohlt, 2002) and costing lower than rice bran, coconut oil cakes, (Huige, 1994 and Santos et al., 2003) reported that the chemical composition of BSG varies with barley variety, time of harvest, malting, mashing conditions, adjuncts added and brewing technology. This article intends to review the chemical composition of brewers spent grain.

Chemical composition of Brewers spent grain

Drymatter and Moisture

Murdock et al. (1981) and Dong and Ogle (2003) who reported DM content of Brewers spent grain ranging from 26 to 31 percent. Senthilkumar et al. (2010) reported that the DM content of brewers spent grain was 29.15 percent. Dhiman et al. (2003) reported a DM value of 33.6 per cent, while Rogers et al. (1986) and Belibasakis and Tsirgogianni (1996) reported lower DM values of 18.6 and 19.3 percent, respectively.

Brewers Spent grains contains 75-80 percent water and deteriorate rapidly due to the growth of bacteria, yeasts and fungi. It is mandatory to use them as soon as possible after reception and to make sure that they are in good condition before utilization (Wyss, 1997; Wadhwa et al., 1995, Aning et al., 1994).

Crude protein

Murdock et al. (1981), Rogers et al. (1986), Belibasakis and Tirtorgogianni (1996) and Dong and Ogle (2003) reported that the CP values ranging from 23.4 to 27.4 percent. A higher (30.1 per cent) and lower (20.0 per cent) CP values were reported by Crickenberger and
Johnson (1982) and Ranjhan (1998) respectively. Senthilkumar et al. (2010) reported that the CP content of brewery waste was 24.34 percent.

Ether extract
The EE content of brewers spent grain was 10.6 percent reported by Dong and Ogle (2003) while Senthilkumar et al. (2010) reported lower value of 5.19 percent.

Total Ash
Ranjhan (1998) and Dong and Ogle (2003) reported that total ash content of BSG ranges from 3-5 percent where as Senthilkumar et al (2010) reported 5.76 percent

Acid insoluble ash
Senthilkumar et al (2010) reported that the acid insoluble ash content was 4.42 percent

Nitrogen free extract (NFE)
Dong and Ogle (2003) reported that NFE values ranging from 41.2 to 48.1 percent, and (Senthilkumar et al., 2010) reported 45.07 percent where as Ranjhan (1998) reported higher value of 53.9 percent. The gross energy content of brewery waste was 3543.52 kcal/kg (Senthilkumar et al., 2010).

Neutral Detergent Fibre (NDF)
Senthilkumar et al (2010) reported that the NDF content of brewery waste was 54.64 percent. Murdock et al. (1981) and Dong and Ogle (2003) also reported similar NDF values ranging from 50 to 55 percent. Higher NDF value of 70 percent was reported by Dhiman et al. (2003). On contrary, Belibasakis and Tsirgogianni (1996) reported lower NDF values between 40 to 50 percent.

Acid Detergent Fibre (ADF)
Murdock et al. (1981) and Rogers et al. (1986) reported that ADF content of BSG was 20 percent which is lower than 24.68 percent as reported by Senthilkumar et al (2010). However, Dong and Ogle (2003) reported lower value of 17.5 percent and Dhiman et al. (2003) reported higher ADF value of 27.7 percent.

Hemicellulose
Senthilkumar et al (2010) reported that the hemicellulose and cellulose contents of brewery spent grain was 29.96 percent and 13.14 percent, respectively. Valverde (1994) reported a higher hemicellulose content of 39 percent for BSG

Lignin
Senthilkumar et al (2010) reported that the lignin content of brewers spent grain was
7.12 percent, which is higher to the value of 4 to 5 percent as reported by Murdock et al. (1981).

Mineral

High amounts of calcium, magnesium, silicon and phosphorus were reported to be 1038.5, 687.5, 242 and 1977 ppm, respectively (Khidzir et al., 2010), while other minerals (such as cobalt, copper, iron, manganese, potassium, selenium, sodium and sulphur) detected in BSG were of lower concentrations.

Vitamin

Vitamins include (ppm): biotin (0.1), choline (1800), folic acid (0.2), niacin (44), pantothenic acid (8.5), riboflavin (1.5), thiamine (0.7) and pyridoxine (0.7) (Huige 1994; Mussatto et al., 2006). Also, protein bound amino acids have been detected including the essential ones (Essien and Udotong, 2008).

Chemical composition (% on DMB) of Brewers grain reported by different authors

<table>
<thead>
<tr>
<th>Parameters</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>21.0</td>
<td>26.0</td>
<td>21.7</td>
<td>29.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CP</td>
<td>26</td>
<td>29.6</td>
<td>18</td>
<td>24.3</td>
<td>24</td>
<td>22</td>
<td>31</td>
<td>15</td>
<td>21</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>RDP % of CP</td>
<td>40.9</td>
<td>35.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CF</td>
<td>15.3</td>
<td>12</td>
<td>11.3</td>
<td>19.6</td>
<td>17</td>
<td>15.9</td>
<td>18.1</td>
<td>20</td>
<td>13.3</td>
<td>15.1</td>
<td>-</td>
</tr>
<tr>
<td>ASH</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2.4</td>
<td>-</td>
</tr>
<tr>
<td>NDF</td>
<td>47</td>
<td>48.3</td>
<td>-</td>
<td>54.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ADF</td>
<td>23</td>
<td>23.5</td>
<td>-</td>
<td>24.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Crude fat</td>
<td>10.8</td>
<td>9.1</td>
<td>19.6</td>
<td>6</td>
<td>12</td>
<td>9</td>
<td>-</td>
<td>11</td>
<td>-</td>
<td>10.6</td>
<td>-</td>
</tr>
<tr>
<td>EE</td>
<td>-</td>
<td>-</td>
<td>5.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cellulose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>11</td>
<td>15</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>Lignin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>13</td>
<td>6</td>
<td>28</td>
<td>7</td>
<td>-</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>TDN</td>
<td>70</td>
<td>73.9</td>
<td>79.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

References

