A STUDY ON THE POPULATION STRUCTURE OF CLAMBDS IN MULKY ESTUARY, MANGALORE, KARNATAKA

N. Sivashankar¹ and Gangadhara Gowda²
Associate Professor (Fisheries), College of Agriculture, Bheemareayanagudi-585287, Karnataka, India
Department of Fisheries Environment and Ecology, College of Fisheries, Mangalore, Karnataka India
Email: sivareddyn@rediffmail.com

[*The paper forms part of the Ph.D. thesis submitted to the Karnataka Veterinary Animal and Fisheries Sciences University, Karnataka]

Abstract: A study was conducted to know the community structure of the clam beds of Mulky estuary in Mangalore. The seasonal and spatial variations in the qualitative and quantitative composition of the macrobenthic population indicated the dominance of mollusca, polychaetes and crustaceans. Higher populations were observed during the pre monsoon and post monsoon season. The population density of macrobenthos varied between 228 to 915 no/m². Four species of polychaetes were recorded in clam beds in which Seballaria sp and Dendroneries were the most abundant. Crustaceans were represented by amphipods, isopods, barnacles and crabs. Molluscan population were represented by bivalves, and gastropods. Four species of bivalves were recorded in Mulki estuary among which, Meretrix casta and Paphia malabarica were the dominant. Bivalves contributed significantly to the macrobenthic population.

Keywords: Clam beds, macro benthos, monsoon seasons.

Introduction

Bivalve mollusces such as oysters, sea scallops, clams, and soft-shell clams, often aggregate in dense groupings, forming a habitat type known as shellfish beds. Shellfish beds provide many habitat services including refuge for smaller organisms such as polychaete worms, juvenile crabs, snails, and sea stars. Additionally, organisms such as slipper shells, sponges, and algae can attach to shells' hard surfaces in areas otherwise dominated by soft sediments. Shellfish beds provide many important ecosystem services. The concepts of benthic community were expanded by Petersen (1913, 1918), Mollander (1930) and Thorson (1955a, 1957). They suggested that a community is any assemblages of species and individuals, as an organized unit that species composition and their frequency show regular changes in time and space, and that these numerical components keep a certain balance through a definite inter specific food relationship.

Received Dec 12, 2013 * Published February 2, 2014 * www.ijset.net
Because of environmental complexity in the habitat, benthos in the shallow waters show various living manners, though all of them occupy a position at or near the end of a food chain items in marine ecosystems. Benthos play an important role in the recycle or regeneration of nutrients between pelagic and benthic divisions, i.e., without such larger animals as megalo-benthos they form an important source of the demersal fishes which work an indispensable role, in trophic levels and also provide food directly or indirectly through the detritus food chains for various micro consumers in a lower trophic level. Thus, benthos with a role of this kind have a certain domain as a habitat according to their proper manners and form a community in which certain species will occur together in a prescribed areas and the response of the benthic communities to the environmental conditions in the gradient will give not only the important clue to study the characteristics of the organic matter flow in the bottom area (Sbigeru 1982). Hence this study has been carried out to know the community structure of the clam bed in Mulky estuary

MATERIALS AND METHODS

The confluence of the Mulki and Pavanje rivers with the Arabian Sea leads to the formation of Mulki estuary. The Mulki estuary (Lat. 13° 4’ N and Long. 74° 17’ E) is situated at about 45 km north of Mangalore. The estuary is connected to the sea throughout the year and is subjected to tidal influence to the tune of 1.86 m affecting the water to a length of 6.0 km in Mulki river. The bottom is generally sandy with muddy stretches in the deeper areas. Four stations have been selected in the predetermined clambeds (Image 1).
In Mulki estuary, the clam shell deposits extend up to a depth varying between 0.5 and 1 foot below the live clam bed level. The shell deposits are of recent formation and are not fossilized. The clam beds occur in areas at a water depth of 0.5-1.5 m during low tide where live clams formed 57% of the shell layer covering an area of 0.27 sq. km.

Samples were collected at fortnightly intervals (August, 2007-July, 2008) from the selected stations in Mulki estuary. The samples were collected during low tide by using a quadrant having an area of 0.16m², up to a depth of 10 cm and were used for further analysis. For collection of macrobenthos—the associated macrofauna, sediment samples were sieved through a 0.5mm mesh size sieve and the fauna retained in the sieve was preserved in 5% buffered formalin with Rose Bengal solution for further analysis on the distribution, population (no./m²) and species composition of benthic fauna associated with the clambeds.

Results and Discussion

In the present investigation, three major groups were recorded which belonged to mainly to molluscs, polychaetes and crustaceans were found more frequently with greater numbers. The other organisms occurred sporadically.

The numerical abundance of macrobenthic organisms varied between stations and months. The percentage contribution of polychaetes varied from 3.02 to 21.28%, whereas crustaceans varied from 1.05 to 3.22%. The molluscs were most dominant and represented by gastropods, bivalves. The gastropods percentage contribution varied from 3.17 to 41.17% in the clambeds the percentage contribution of bivalve varied from 38.87 to 58.68%. The other miscellaneous forms varied from 4.44 to 5.97% (Fig. 2).

The percentage contribution of macrobenthos in the clambeds were found to be varied in space and time (Fig. 2). During monsoon season, bivalves and gastropods formed 44 and 26% of the total macro benthos respectively. Between different months bivalves were recorded not less than 30% in almost all the months followed by gastropods. In pre-and premonsoon seasons similar trend was noticed. Bivalve species, *Meritrix casta* and *Paphia malabarica* were the dominant one. In gastropods, the dominant group was *Cerithidea fluviatilis* in almost all the months. The spats (*M.casta and P.malabarica*) formed as the third contributor of benthic population varied between varied 3 and 12%. The benthos in the clambeds were dominated by bivalves, gastropods and spats (34.14 to 37.16; 24.86 to 27.80 and 14.42 to 22.54%) respectively (Fig 2).
Fig. 2 Percentage distribution of different macrobenthos in the clam beds

The population of polychaetes among the seasons varied from 1 to 5% in monsoon season; 2 to 18% in post monsoon season and 0 to 1% in pre monsoon season respectively. The most dominating species of polychaetes in the clambeds were *Dendronereis arborifera*.

In the backwaters and estuaries of Cochin and Vembanad lake along the west coast of India, observed the dominance of polychaetes in the benthic community (Ansari 1974, Kurian *et al.* 1975, Kurian 1971, Pillai 1977, Ansari 1977, Sunil Kumar 1995, Kumar 1997. Sunilkumar 2002). Ramachandra *et al.* (1984) recorded higher number of *Dendronereis arborifera* and
Sabellaria cementarium in the polychaete community of Mulki estuary along west coast of India. In the present study also, similar results have been noticed.

The dominant crustacean species observed were Corophium sp and Gammarids. The barnacles observed during the period were found to be settled on small pebbles and shells of molluscs. The monthly distribution among the stations was zero to 21.88 % with a mean of 34.80±9.77 no/m2.

Studies carried in the estuaries of Mandovi-Zuari, Coleron indicated the dominance of crustaceans during post monsoon. (Ansari et al. 1986, Prabhadevi 1994). However, Prabhu et al. (1993), Mohan Kumar (1999) and Shanthanagouda (2001) did not observe significant contribution of crustaceans in general and amphipods in particular to the total macrobenthos in the Gangolli, Mangalore coastal waters and Nethravati-Gurupur estuaries respectively. In the present study also, the contribution of crustaceans was negligible to the total macroenthos in Mulki estuary.

The gastropods in the clambeds ranged from 24 to 32% during the monsoon season; 22 to 28% in premonsoon months and 22 to 28 % in post monsoon months. The most dominant species are Cerithidea fluviatilis, Neritina oualaniensis Nerita pollita and Eunaticina papilla

Studies conducted in Cochin backwaters, Mulki estuary, Kali estuary indicated the higher contribution of molluscs to the total macrobentic c ommunity in the calm beds (Ansari 1977; Ramachandra et al. 1984 and Bhat and Neelakantan 1988).

In the present study, the bivalve population consisted of spats and the adult clams. The clams were mainly dominated by only two species viz.,Meretrix casta and Paphia malabarica in all the stations. The percentage contribution of clams towards total population of varied from 47.93 to 67.71% during monsoon season, 34 to 48 % in post monsoon season and 34 to 37 % in pre monsoon season.

Ramachandra et al.,(1984) documented low number of molluscs during monsoon and high population during post and pre monsoon in Mulki estuary. Devassy et al., (1987), Mohan Kumar (1999) observed the peak abundance of molluscs during post monsoon season. Shanthanagouda (2001) observed dominance of molluscs during post and pre monsoon season. In the present study also, similar trend was noticed, viz dominance mollusca in the post and pre monsoon season.

Sand tubes, mud tubes and egg cases formed the bulk of miscellaneous forms. During monsoon season the density of these varied from 3 to 4 no/m2 in monsoon season; 5 to 10 no/m2 in post monsoon season and 3 to 10 no/m2 pre monsoon season respectively.
Correlation studies on the influence of different environmental parameters on the distribution of benthos indicated that the polychetes had positive relationship with sand, clay and very fine sand indicating its preference. A positive correlation was observed with respect to gastropods with all the parameters except ammonia. The molluscs showed positive correlation with parameters like pH, dissolved oxygen chlorophyll and with very fine sand (Table 1)

Conclusion

It can be concluded that, the community of clam bed were comprised of Polychetes, Gastropods, Molluscs, Crustaceans, Spats of clams viz *Metretrx casta, Paphia malabarica*.

References

Table 1: Correlation coefficients of total fauna in relation to different physico-chemical parameters in the clambeds.

Populations	Water Temp	Sediment Temperature	Water pH	Sediment pH	Salinity	Interstitial Salinity	Dissolved Oxygen	Ammonia	Chlorophyll	Susp.solds	Organic Carbon	Plankton	Sand	Silt	Clay	V.Cr. sand	Coarse sand	Medium sand	Fine sand	V.f. sand			
Total Benthos	0.425	0.551	0.671	0.630	0.717	0.749	0.678	-0.614	0.447	0.749	--	--	--	--	--	--	--	--	--	0.481	1.00		
Polychaetes	--	--	--	--	0.398	0.445	--	--	--	0.445	0.445	--	--	-0.506	0	0.43	--	--	--	--	0.562	0.545	
Crustaceans	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--		
Bivalves	--	--	0.412	--	--	--	0.410	--	0.384	--	--	--	--	--	--	--	--	--	--	--	0.405		
Total spats	--	--	--	0.421	0.398	0.419	0.328	--	--	0.419	--	--	--	0.455	--	--	--	--	--	0.612			
Gastropods	--	0.328	0.405	0.435	0.457	0.447	0.382	-0.381	0.363	0.447	--	--	--	--	--	--	--	--	--	0.609			
Miscellaneous	--	0.397	--	--	--	0.391	--	-0.460	0.405	0.391	--	--	--	--	--	--	--	--	--	--			
M.casta spats	0.381	0.423	0.436	0.562	0.511	0.542	0.431	-0.428	0.323	0.542	--	--	--	--	--	--	--	--	--	0.741			
P.malabarica spats	0.347	0.420	0.448	0.542	0.516	0.537	0.460	-0.405	--	0.537	--	--	--	--	--	--	--	--	--	0.796			
M.casta	--	--	--	--	--	--	--	--	--	0.305	--	--	--	-0.637	--	-0.614	--	0.545	--	--	0.183		
P.malabarica	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-0.729	--	0.671	--	-0.504	0.05	0.404	0.082