Case Report

MANAGEMENT OF BUFFALO POX IN NATIVE BUBALINE SPECIES: A CASE REPORT
G. Raju*1, N. Vamshi Krishna Reddy2, M. Rajashri3, K. Ramachandra Reddy4
1PG Scholar, 2M.V.Sc, 3Ph.D Scholar, 4Associate Professor & Head
Department of Veterinary Gynaecology and Obstetrics
P.V. Narsimha Rao Telangana Veterinary University, Rajendranagar,
Hyderabad, Telangana-500030
E-mail: rajareddy.gouru@gmail.com (*Corresponding Author)

Abstract: The present comminque reports management of Buffalo pox in bubaline population of Hyderabad, Telangana
Keywords: Buffalo pox virus; non-descript buffalo; human infection; zoonosis.

Introduction

Buffalo pox virus (BPXV) is the causative agent of buffalopox disease that has been reported throughout the world (Souza, Trindade et al., 2003) and pondered to be emerging and re-emerging disease in buffalo-raising countries (Singh et al., 2007; Bhanuprakash et al., 2009) and has zoonotic repercussions (WHO) (Goraya et al., 2015). Outbreaks of buffalopox affect udder and teats, which may ultimately lead to mastitis in dairy buffalo and can significantly compromise the production (Goraya et al., 2015). Though the disease is not responsible for increased mortality, it adversely affects the productivity and working capacity of the animals resulting in high economic losses (Chandra et al., 1986; Cockrill, 1997; Venkatesan et al., 2010). The present report describes a case of buffalo pox in native Buffalo.

History and Observation

A non-descript Murrah buffalo was brought to Teaching veterinary clinical complex (TVCC), Rajendranagar with a history of pustules on the udder, teat, around the vulval lips, mouth and lateral part of the body, inappetence and drop in milk yield. On clinical examination, the animal had pyrexia (Rectal Temperature -104.5ºF). Pustules and scab lesions were seen on the teat and udder tissue (Fig. No.1). Lesions were also seen on the muzzle, mouth, the vulval lips and lateral part of the body. Hematological values and differential leukocyte count (DLC) were represented in Table No. 1 & 2 respectively.
Secondary lesion might lead to mastitis which resulted in great discomfort to the animal while milking.

Treatment:

The infected animals were treated with broad spectrum antibiotics to prevent secondary bacterial infection (Inj. Enrofloxacin – 1500mg; I/M) for 5-7 days along with Meloxicam (Inj. Melonex; Intas) for 3 days. External application of antibacterial cream and multipurpose Ayurvedic gel Charmin plus was also advised. Few maggotized wounds were observing on ear, udder and vulval region. These areas were treated with application of oil turpentine maggots were removed later neem oil was applied on wound 2-3 times daily. Pustules healed quickly upon treatment and lead to scab formation due to formation of granulation tissue underneath. The scab size varied from 0.5-1cm in diameter and the granulation tissue caused elevation of the lesion and after one week the scabs dropped off leaving a wart like granuloma surrounded by a characteristic horse shoe shaped ring of little scabs. Some other buffaloes of neighboring farmers herd were also affected with similar symptoms. The affected animal was kept in isolation in order to reduce the risk of spread of infection to the neighboring animals. Localized milkers nodes were usually treated symptomatically by applying protective bandages with desiccating ointments, powders and local antibiotics to prevent secondary infection.

Discussion

In India, buffalo pox virus (BPXV), a variant of vaccinia virus, is associated with severe disease outbreaks among buffaloes (Singh *et al.*, 2007). Buffalopox is an important zoonotic infection, which affects domestic buffalo (Bubalus bubalis), cattle and humans (Bhanuprakash *et al.*, 2009). The disease is of public health importance and warrants biosafety measures in handling the virus/disease (Yogesh *et al.*, 2011). Lesions noticed on the milk man’s hand (Fig. No. 2- A & B) might be due to direct contact with the infected animal. Due to suckling, lesions were also developed on muzzle of buffaloe calf. Moreover, other buffaloes were also affected which may be spread through the common milkman.

The elevation of ESR & mild neutrophilia might be due to local inflammation. Secondary mastitis was developed & it was probably due to interference with the teat sphincter which allowed the entry of mastitis organisms and thus predisposed to mastitis. Buffalo recovered uneventfully within 20 days of treatment. The spread of the disease was controlled by adopting control measures. Emphasis should be laid on education of the farmers
regarding zoonotic infections and the practice of using gloves while milking should be enhanced to reduce the spread of infection from infected buffaloes to the uninfected ones.

References
TABLES

Table 1. Hematological values

<table>
<thead>
<tr>
<th>S.No</th>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Haemoglobin (Hb)</td>
<td>13.9%</td>
</tr>
<tr>
<td>2</td>
<td>Erythrocyte sedimentation rate (ESR)</td>
<td>25mm/hr</td>
</tr>
<tr>
<td>3</td>
<td>Packed cell volume (PCV)</td>
<td>35%</td>
</tr>
<tr>
<td>4</td>
<td>RBC count</td>
<td>6.2×10⁹/cmm</td>
</tr>
<tr>
<td>5</td>
<td>WBC count</td>
<td>9.8×10³/cmm</td>
</tr>
</tbody>
</table>

Table 2: Differential Leukocyte Count (DLC)

<table>
<thead>
<tr>
<th>S.No</th>
<th>WBC type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neutrophils</td>
<td>46%</td>
</tr>
<tr>
<td>2</td>
<td>Lymphocytes</td>
<td>46%</td>
</tr>
<tr>
<td>3</td>
<td>Monocytes</td>
<td>3%</td>
</tr>
<tr>
<td>4</td>
<td>Eosinophils</td>
<td>2%</td>
</tr>
<tr>
<td>5</td>
<td>Basophils</td>
<td>3%</td>
</tr>
</tbody>
</table>

Fig. 1: Showing typical pock lesions on the teats and udder of the affected Buffalo
Fig. 2A: Lesions on the milk man’s hand due to direct contact with the infected animal.

Fig. 2B: Lesions on the milk man’s hand due to direct contact with the infected animal.