VP7 GENE BASED PHYLOGENETIC ANALYSIS OF BLUE TONGUE VIRUS SEROTYPE 15

M Sonali1, Y N Reddy2, K Dhanalakshmi3 and M R Reddy4
1 Assistant Professor, Department of Veterinary microbiology, College of Veterinary Science, Korutla, Telangana.
2 Professor and Head, 3 Associate Professor, Department of Veterinary Microbiology, College of Veterinary Science, Rajendranagar, Telangana
4 Senior Scientist, PDP, Hyderabad, Telangana
E-mail: sonalivet31@gmail.com (*Corresponding Author)

Abstract: The present study was undertaken with a view to characterize BTV 15(N12) isolate employed for trial vaccine. BTV 15 virus was cultivated in BHK21 cell line and RNA was isolated. Further, RT-PCR was standardized for detection of VP7 gene of BTV 15. Molecular characterization of the isolate was taken up by the sequencing of VP7 (segment 7). The sequences were compared to the available sequences in Genbank. Further analysis indicated that all VP7 nucleotide sequences segregated into 7 phylogenetic clades. Results indicated that BTV-15 (N12) was more closely related to BTV-15 (N15), BTV-15 (DQ399835), BTV-15 China than to BTV 15 Australia and BTV-9 (MBN isolate). From this study it can be concluded that the BTV-15 Indian isolate might have been originated from Chinese strains.

Keywords: Bluetongue virus, VP7 gene and Molecular characterization.

Introduction

Bluetongue is an economically important disease of domestic and wild ruminants. The disease is caused by bluetongue virus belonging to the genus Orbivirus of family Reoviridae (Sairaju V et al., 2013). The disease is transmitted by culicoides midges and is endemic where culicoides species can survive (Susmitha et al., 2012). Twenty seven serotypes of BTV are recognized worldwide (Jenckel M et al., 2015, Maan NS et al., 2012., Rao PP et al 2012). The BTV genome is composed of ten linear segments of double-stranded RNA (dsRNA). The 10 segments code for seven structural (VP1-VP7) and four non structural proteins (NS1,2,3,3A) (Bommineni et al., 2008., Rao PP et al 2012., Maan NS et al., 2012.). The VP7 protein is not only a major group reactive antigen, but also a good stimulator of B cells mediated immune response (Jeggo and Wardy 1986). In BTV infected animals majority of the antibody response is against the group specific antigen VP7 (Joseph and Yang 1990). The VP7 protein being responsible for cell tropism of BTV in the insect vector, would have been

Received Apr 5, 2017 * Published June 2, 2017 * www.ijset.net
evolving with the different culicoides species present in various regions in the world to form distinct topotypes (Bonneau et al., 2000). Detailed information on this gene may useful for characterizing the strain, genotyping, vaccine production and development of drugs. In the present study, VP7 gene based phylogenetic analysis of Bluetongue virus serotype 15 was studied.

Materials and methods
The BTV serotype 15 serotyped at serotyping Centre, All India Net Work Project on Bluetongue disease, Haryana Agricultural University, Hissar was used in this study. Bluetongue virus was passaged five times in BHK21 cell lines. The RNA was isolated from BTV infected cell cultures by Acid Phenol method (Chomczynski and Sacchi (1987)). The quality of isolated RNA was checked by agarose gel (1% w/v) electrophoresis. VP 7 gene was amplified by using the set of primers described by Wade Evans et al. (1990) based on segment 7 sequence of BTV-1 South Africa (GenBank Acc. No. X53740). The primers were S7(1-17)- F 5’GTTAAAAATCTATAGAG3’ and S7(1156-1138) –R 5’GTAAGTGTAATCTAAGAGA3’. The product size was 1156 bp. For cDNA synthesis RNA mix was prepared by adding 1µl primer A (20 pmol/µl) and 1µl Primer B (20 pmol/µl) to 8 µl of isolated RNA. The mix was heated at 68°C for 5 min. and snap cooled on ice. cDNA mix was prepared by adding 4.0µl of 5XRT buffer, 1 µl of DTT(0.1M), 0.5 µl of RNase out(40U/µl), 1.0 µlof AMV RT(15U/µl), 2.0µl of dNTPs and 1.5 µl of ultra pure water. cDNA mix was added to RNA mix, incubate at 25°C for 15min and 42°C for 45min then kept at 4°C. cDNA of VP7 genes was amplified by Polymerase chain reaction as per the protocol of Wade Evans et al. 1990 with some modifications. The PCR mix consisted 5µl of 10X PCR buffer, 5µl of Magnesium chloride (25mM), 1µl of 10mM dNTPs, 1µl of taq DNA polymerase (5U/µl), 31 µl of Nuclease free water, 5µl of cDNA and 1µl(20pM) each of forward and reverse primers. The PCR was carried out by thermal cycler machine (Thermo scientific). The cycling conditions were initial denaturation at 95°C for 3min, 30 cycles of 95°C/20sec,39°C/60sec primer annealing and 70°C/2min extension followed by final extension of 70°C for 7min. After completion of the cycles the PCR product obtained was subjected to 1% agarose gel electrophoresis. PCR product was purified with QIA quick gel extraction kit (cat no. 28704) as per the manufacturer’s instructions with suitable modifications. Purified PCR product was sequenced at M/s Bioserve Biotechnologies Ltd, Hyderabad, using PCR sequencing method in Beckman CEQTM 8000 Genetic Analysis System using S7 gene specific primers. The sequence of segment 7 of BTV 15 isolates
obtained after sequencing were then aligned with database sequences using NCBI BLAST (www.ncbi.nlm.nih.gov/blast) to confirm their identity. Further, nucleotide sequence was multiple aligned using CLUSTAL W (Thompson et al., 1997) with 75 different BTV VP7 gene sequences, obtained from GenBank. All available sequences were loaded in CLUSTAL W (www.ebi.ac.uk/clustalw) software to obtain the cladogram.

Results and discussion

Double stranded RNA isolated from BHK-21 cell cultures infected with BTV-15 isolate was analyzed by agarose gel electrophoresis and revealed segmented genome pattern with 10 bands including two inseparable bands (Fig 1). Segmented pattern of genome is characteristic feature of BTV nucleic acid (Verwoerd et al., 1972; Squire et al., 1983 and Roy 1992). Resolving RNA bands were not clear for two segments. RT-PCR was standardized for VP7 gene of BTV serotype 15 (N12). A specific band of 1156bp was observed (Fig 2) as expected. The sequence of the isolate was compared with available sequences in the database (genbank) using clustal W software.

![Fig:1 Migration patterns of the BTV – 15 (N12)](image1)
Lane:1 100bp ladder
Lane:2 and 3: BTV – 15 (N12) ds RNA
Lane: 4 BHK21 Cell RNA
Lane 5: 1kb ladder

![Fig: 2 VP7 gene PCR product of BTV -15 (N12)](image2)
Lane:1 & 2 BTV-15 (N12)
Lane :3 1 kb ladder

The percentage of identity of isolate with Australian BTV-15 strain, Cinese BTV-15 strain and BTV strain of Taiwan was 76, 63 and 76%. Phylogenetic analysis revealed that VP7 gene sequence of available BTV serotypes can be distributed into 7 clades (Fig 3). The isolates of BTV-2 and BTV-15 are segregated into clade 1(Fig 3). Further analysis of segment 7 revealed that there was 73% homology between BTV-15 (N12) and BTV-2 (M11). BTV-15 (N12) was closely related to BTV-15 (N15), BTV-15 (DQ399835), BTV-15 China than to BTV-15 Australia and BTV-9 (MBN). Nucleotide homology of S7 segment between Indian isolates of BTV-2, 9 and BTV-10 US was 79% (Prasad 2005). Dalal et al. (2008) observed that BTV-15 was closely related to BTV-10 and 17 from USA. Kowalik et al. (1990) cloned
and sequenced VP7 gene of all the 5 US serotypes of BTV-2, 10, 11, 13, 17 and reported that there was 7-20% nucleotide sequence divergence among them with BTV-13 being most divergent serotype. Comparative analysis indicated that the BTV-15 VP7 sequence had diverged significantly from that of other members of the BTV serogroup (Wang et al., 1994).

Fig 3: Phylogenetic analysis of VP7 gene sequence of various BTV isolates

From this study it can be concluded that the BTV-15 (N12) Indian isolate might have been originated from Chinese strain. The present available sequence data is not sufficient to give firm conclusions. Data of other conserved gene of BTV 15 might be more useful in topotyping than the VP7 gene. Further the reassortment and genetic drift may be playing an important role in evolution of new BTV strains.

References

