EFFECT OF CONCURRENT EXPOSURE OF HIGHER CONCENTRATIONS OF LEAD AND ENDOSULFAN ON CERTAIN BIOCHEMICAL PARAMETERS IN WISTAR RATS

V. Ranganathan1*, Jitendra Kumar Malik, Naraharisetti Suresh Babu, Manoj Aggarwal, G. S Rao and P. Sankar1
Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar-243 122 (U.P.), India
1Veterinary College and Research Institute, Orathanadu, Tamil Nadu Veterinary and Animal Sciences University
E-mail: varanganathan@gmail.com (*Corresponding Author)

Abstract: The effect of concurrent repeated exposure of higher concentrations of lead and endosulfan were evaluated on certain biochemical parameters in male wistar rats. Rats of group I served as untreated control where as Group II received drinking water containing lead as lead acetate @1000 ppm (Pb1000). Group III was exposed to feed containing technical grade endosulfan @ 10 ppm (E100). Group IV was exposed to Pb (1000) +E (100). Blood and target organs were collected for estimation of biochemical parameters to assess toxicity by combination of these two chemicals at higher doses. The results suggest that higher doses of endoulfan and lead alone and in combination may modify general biochemical parameters carried out in the study.

Keywords: Lead, Endosulfan, Biochemical parameters.

Introduction

Lead is a major human health hazard due to its wide distribution in the environment and in biological systems (Zhen et al., 2013). Endosulfan is a member of the cyclodiene group of organochlorine pesticides used worldwide in agriculture. It is used around the world for applications on vegetables, fruits, and non-food crops such as cotton and tobacco. This colourless solid has emerged as a highly controversial agrichemical due to its acute toxicity (Wade et al., 2002). Since multiple-chemical exposure is believed to represent a realistic picture of the human and animal chemical toxic burden, one chemical may modify the effect of the other by altering its kinetics and/or dynamics in a co-exposure situation. In view of the increased use of endosulfan for agroproduction and high levels of lead in the ground water and environment, coexistence of lead and endosulfan seems to be a reality and simultaneous exposure of human and animals to these chemicals could be potentially hazardous.
Human and animals may be exposed to lead and endosulfan concomitantly. The interaction resulting from the concurrent exposure of lead and endosulfan cannot be predicted to be less hazardous. Hence the present study was aimed to evaluate whether repeated co-exposure to lead through drinking water and to dietary endosulfan at higher concentration level could modify the effect produced by each compound on general biochemical parameters in male wistar rats.

Materials and Methods

Colony-bred adult male albino Wistar rats (70-90g; 4-5 weeks age) were procured from Laboratory Animal Resource Section, Indian Veterinary Research Institute, Izatnagar. As per the Institute Animal Ethical Committee guidelines they were maintained under standard managerial conditions. Four groups of six rats were taken for the study. Rats of group I served as untreated control where as Group II received drinking water containing lead as lead acetate @100 ppm (Pb1000). Group III was exposed to feed containing technical grade endosulfan @ 10 ppm (E100). Group IV was exposed to Pb (1000) +E (100). All the treatments were given daily for 28 days. Rats of all the groups were observed daily for clinical signs and mortality, if any, during the entire period of the experiment and body weights were recorded weekly. Blood was collected and used for estimations of general blood biochemical parameters.

Serum was separated from anticoagulant free blood samples and refrigerated at 4°C for biochemical estimations. Blood urea nitrogen (BUN), serum creatinine, serum alanine (SALT) and serum aspartate aminotransferases (SAST) were determined by using Span diagnostic kits, India. Estimation of haemoglobin was done by cynomethaemoglobin method using kit (Beacon, India). The organs were examined for any gross abnormality. Liver, kidney, brain, heart, lung and testes were removed, washed free of extraneous material and weighed. Results have been expressed as mean ± SEM. The data were analyzed by ANOVA with Duncan’s multiple comparisons (Snedecor and Cochran, 1989).

Results and Discussion

After 28 days, there were no significant changes in the body weights of rats given higher concentrations of lead, endosulfan and lead plus endosulfan in all groups taken for the study. Similar results were noticed in the reports of Wade et al. (2002) and Banerjee and Hussain (1987) with lead and endosulfan, respectively. In the present study, significant increases (P<0.05) in absolute weights of liver and kidney were noticed in rats treated with
lead and endosulfan at higher dose alone. Testes weight was also observed to be increased in

group treated with lead and endosulfan at higher dose when given alone.

Kidney weight increase in male rats with 100 ppm dose of endosulfan at 104 weeks of

exposure was observed by Keller (1959c). Several reports also confirm elevated liver weight

by endosulfan (Gupta and Gupta, 1977; Dikshith et al. 1984). Significant increase in liver

weight was observed in rats exposed to 50 ppm endosulfan (Banerjee and Hussain, 1987).

Significant elevation in kidney weight was observed in a study in rats exposed to 0.5% lead

acetate in drinking water after 3 months (Vyskocil et al., 1995). This increase in liver and

kidney weight in lead and endosulfan exposed rats may be attributed to proliferation of

smooth endoplasmic reticulum. Such alteration of the hepatic system may directly or

indirectly influence the function of lymphatic system. Another reason for elevated weight

may be the cytotoxicity developed by the compounds.

In the present study, both lead (1000 ppm) and endosulfan (100 ppm) treated rats showed

increased serum levels of ALT, BUN and creatinine and decreased levels of glucose. It is in

accordance with the findings of Dikshith et al. (1988) who reported increase in serum ALT

levels in rats received endosulfan. Shalan et al. (2005) reported elevated serum ALT levels in

rats receiving lead at 500 mg/kg in diet daily for 6 weeks. Rahman and Sultana (2006) also

showed elevated transaminase enzymes in rats in their study. Teijon et al. (2006) also

reported the changes in blood urea nitrogen, alanine aminotransferase, and alkaline

phosphatase in the first month of post weaning of rats given with 400 ppm of lead in drinking

water. Ashour et al. (2007) who reported decreased serum glucose, elevated serum urea, uric

acid and creatinine in rats receiving 1000 and 2000 ppm of lead acetate. Increase in serum

ALT may be the indication of injury to the liver. Increase in the levels of BUN and creatinine

may be the indication of nephrotoxicity. Liver and kidney are the two main target organs for

both lead and endosulfan (ATSDR, 2000). Lead acetate elicits toxic pathological changes in

the testes in mice treated with lead @ 200 mg/kg body weight compared to respective control

groups (Acharya et al., 2003). Recent report indicates that endosulfan induces testicular

toxicity and damage testicular tissue by the process of necrosis (Jaiswal et al., 2005).

Testicular toxicity may be attributed to the endocrine disrupting property of both compounds.

In conclusion, it is suggested that the effects on biochemical parameters by repeated exposure

to combination of lead and endosulfan at the concentrations used in the study may be

modified significantly to produce toxicity.
Acknowledgements: The authors express their gratitude to the Director, Indian Veterinary Research Institute, Izatnagar for providing necessary facilities for conducting this study.

References

Table 1: Effect of 28-day treatment with lead, endosulfan and their combination on general biochemical parameters in rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>SALT (units/ml)</th>
<th>SAST (units/ml)</th>
<th>Creatinine (mg/dl)</th>
<th>BUN (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>63.62±0.36a</td>
<td>77.21±0.57</td>
<td>1.25±0.00a</td>
<td>17.59±0.22a</td>
</tr>
<tr>
<td>Pb-1000</td>
<td>65.01±0.38b</td>
<td>76.73±0.28</td>
<td>1.32±0.01b</td>
<td>20.14±0.15b</td>
</tr>
<tr>
<td>E-100</td>
<td>65.11±0.39b</td>
<td>76.71±1.52</td>
<td>1.33±0.01b</td>
<td>20.16±0.26b</td>
</tr>
<tr>
<td>Pb-1000+E-100</td>
<td>64.46±0.52ab</td>
<td>78.08±0.85</td>
<td>1.33±0.02b</td>
<td>20.17±0.13b</td>
</tr>
</tbody>
</table>

Pb-1000 indicates lead 1000 ppm and E-100 indicates endosulfan 100 ppm. Different superscripts in a column differ significantly (mean ± S.E.M., n=6, P≤0.05) in Duncan multiple comparison post hoc test.

Table 2: Effect of 28-day treatment with lead, endosulfan and their combination on organ weights in rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Liver</th>
<th>Heart</th>
<th>Brain</th>
<th>Kidney</th>
<th>Lungs</th>
<th>Testis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6.66±0.05a</td>
<td>0.75±0.01</td>
<td>1.46±0.01</td>
<td>1.25±0.01a</td>
<td>1.36±0.01</td>
<td>1.95±0.48a</td>
</tr>
<tr>
<td>Pb-1000</td>
<td>7.52±0.31b</td>
<td>0.75±0.01</td>
<td>1.50±0.02</td>
<td>1.32±0.02b</td>
<td>1.36±0.04</td>
<td>2.18±0.10ab</td>
</tr>
<tr>
<td>E-100</td>
<td>7.43±0.21b</td>
<td>0.74±0.01</td>
<td>1.45±0.01</td>
<td>1.38±0.01bc</td>
<td>1.34±0.01</td>
<td>2.31±0.08c</td>
</tr>
<tr>
<td>Pb-1000+E-100</td>
<td>7.61±0.34c</td>
<td>0.77±0.01</td>
<td>1.46±0.01</td>
<td>1.41±0.03c</td>
<td>1.36±0.01</td>
<td>2.27±0.07b</td>
</tr>
</tbody>
</table>

Table 3: Effect of 28-day treatment with lead, endosulfan and their combination on haemoglobin (g/dl) in rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Haemoglobin (g/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>15.81±0.32a</td>
</tr>
<tr>
<td>Pb-1000</td>
<td>12.12±0.12b</td>
</tr>
<tr>
<td>E-100</td>
<td>12.16±0.31b</td>
</tr>
<tr>
<td>Pb-1000+E-100</td>
<td>12.45±0.33b</td>
</tr>
</tbody>
</table>

Pb-1000 indicates lead 1000 ppm and E-100 indicates endosulfan 100 ppm. Different superscripts in a column differ significantly (mean ± S.E.M., n=6, P≤0.05) in Duncan multiple comparison post hoc test.